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ABSTRACT: Most experimental polymerization kinetic
data are in the form of degree of polymerization versus time
plots. However, to explore kinetic models it is more useful to
have the data as polymerization rate versus degree of poly-
merization plots. Converting degree of polymerization into
rate is an ill-posed problem in that if inappropriate methods
are used the noise in the data will be amplified, leading to
unreliable results. This paper describes a procedure, based
on Tikhonov regularization, to perform this conversion. The
procedure is independent of kinetic models and keeps noise
amplification under control. Its performance is demon-

strated using several sets of published polymerization ki-
netic data. In each case the computed rates are used to
determine the parameters in the rate expression proposed in
the original papers. Modified rate expressions will also be
explored. The ease with which such investigations can be
performed highlights the advantages of this new procedure.
© 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1625–1633, 2004
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INTRODUCTION

In a typical polymerization kinetic investigation the
progress of the reaction is monitored by measuring the
degree of polymerization X(t) as a function of time t.
Guided by prior experience or knowledge of the likely
mechanism, a rate expression is then proposed that
relates the polymerization rate r(t) � dX(t)/dt to X(t)
and other relevant experimental conditions. The next
step is to determine the numerical values of the kinetic
parameters in the rate expression from the experimen-
tal data. The general method for doing this is to treat
the rate expression as a differential equation and in-
tegrate it to give the computed degree of polymeriza-
tion X(t) as a function of time with the kinetic param-
eters appearing as unknowns to be determined. Typ-
ically these parameters are found by least-squares
regression between the computed degree of polymer-
ization and its experimentally observed counterpart.

The polymerization rate expression can take the
form of a differential equation of such complexity that
it can only be integrated numerically. Determination
of the kinetic parameters in the rate expression by
least-squares regression requires repeated numerical
integration of the equation, making the entire process
very time consuming. There is often another problem.
Because of the generally complex form of the inte-

grated rate expression, there may be several locally
optimum kinetic parameter sets. It is also possible that
the minimum of the least-squares regression compu-
tation may not be sufficiently sharp to allow the ki-
netic parameters to be determined to the degree of
accuracy required.

The present investigation adopts a different ap-
proach. Instead of integrating the rate expression and
then matching the computed X(t) with the experimen-
tal observations, the experimental data are converted
into polymerization rate dX(t)/dt. This is compared
directly with the proposed rate expression. The rate
expression is usually a simpler expression, compared
to the form of the integrated X(t) profile, and allows
the parameters in the expression to be determined
with greater ease and possibly also to a higher degree
of certainty.

Thus, the key step in this new procedure is the
differentiation of the experimentally measured X(t)
data. Direct differentiation of experimental data usu-
ally does not lead to reliable polymerization rates
because differentiation amplifies the unavoidable
noise in the data.1 Special procedures were developed
to perform this task.2 Recently Yeow et al. showed that
Tikhonov regularization is a reliable yet simple pro-
cedure for obtaining reaction rates from the time-
concentration data for a wide class of chemical reac-
tions.3 They demonstrated that the procedure is suc-
cessful in keeping noise amplification under control
and has the added advantage that it does not require
the assumption of a rate expression to describe the
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original experimental data. The aim of this paper is to
demonstrate that this procedure is equally applicable
to the kinetic data of polymerization and the advan-
tages observed in its application to simple chemical
reactions are also retained in polymerization reactions.

For this purpose a number of sets of polymerization
kinetic data are taken from the published literature.
These are converted into rate profiles and compared
with generally accepted kinetic models to illustrate the
simplicity of the computation involved. Since the
models are either as proposed by the originators of the
data or minor modifications thereof, no attempt will
be made to justify them. The experimental conditions
and methods used in generating these data can be
found in the original literature. Apart from a brief
mention, such details will be omitted.

THE GOVERNING EQUATION

The relationship between the polymerization rate r(t)
� dX(t)/dt and the degree of polymerization X(t) can
be rewritten as

X�t� � �
t��0

t

r�t��dt�. (1)

This is an integral equation of the first kind for the
unknown polymerization rate r(t) and reveals clearly
the ill-posed nature of the problem.2 If inappropriate
methods are used to solve this integral equation the
noise in the experimental degree of polymerization
data will be amplified, leading to inaccurate results.

Following Yeow et al.,3 eq. (1) is transformed into

XC�t� � �
t��0

t

�dt�r�t��
dt� � t�f�t���dt� � t�r�t���t��0

t

� �
t��0

t

t�f�t��dt� � tr�t� � �
t��0

t

t�f�t��dt� � t� �
t��0

t

f�t��dt� � r0�
� �

t��0

t

t�f�t��dt� � �
t��0

t

�t � t��f�t��dt� � tr0, (2)

where f(t) � dr(t)/dt and r0 � r(0). Equation (2) is an
integral equation of the first kind for f(t). Tikhonov
regularization is used to obtain an approximate nu-

merical solution for the unknown function f(t) and the
constant r0. The superscript C is used to distinguish
the computed degree of polymerization given by this
equation from its experimentally measured counter-
part which will be denoted by the superscript M.

Once f(t) and r0 are known, r(t) and X(t) can be
obtained by direct numerical integration. Since the
integration process averages out noise, the r(t) thus
obtained can be expected to be relatively free from the
influence of experimental noise.

Equation (2) is the starting point of the present
investigation. Inputs to this equation are the experi-
mentally measured degree of polymerization data
points: (t1, X1

M), (t2, X2
M), (t3, X3

M), . . . (tND
, XND

M ). ND is
the number of points in the set. It is usually a relatively
small number, typically around 10 to 50, and the data
points may or may not be regularly spaced out in time.
From the way eq. (2) was obtained it is clear that this
equation is independent of the nature of the polymer-
ization reaction.

TIKHONOV REGULARIZATION

To apply Tikhonov regularization to eq. (2), f(t) for 0
� t � tND

is discretized into NK uniformly spaced
points (f1, f2, . . . fNK

). Typically NK is a large number of
the order of 401 or 601 or larger. The unknowns of the
problem are (f1, f2, . . . fNK

, r0). These unknowns can, in
principle, be determined so that they

(i) minimize the sum of squares of the difference
between the measured and computed degrees of po-
lymerization to ensure accuracy;

(ii) minimize the sum of squares of the second de-
rivatives d2f(t)/dt2 at the internal descretization points
to ensure a smooth f(t).

In Tikhonov regularization, instead of minimizing
(i) or (ii) a linear combination of these two require-
ments is minimized. It can be shown that the set of (f1,
f2,. . . fNK) and r0 that minimize the linear combination
is3

g � �ATA � ��T�)�1ATXM. (3)

g is used to represent the column vector of the un-
knowns, i.e., � f1,f2,. . .fNK,r0� A and � are known matri-
ces arising, respectively, from the discertization of the
integral in eq. (2) and the finite difference approxima-
tion of the second derivative d2X(t)/dt2 at the internal
discretization points.3 � is an adjustable weighting/
regularization factor. A large � favors (ii), resulting in
a very smooth f(t). On the other hand a small � favors
(i), leading to a close match with the experimental data
but the resulting f(t) may exhibit excessive and phys-
ically unrealistic fluctuations. In practice � is chosen so
that the average deviation between the measured and
computed X(t) is of the same order as the experimen-
tal error bar of XM(t).
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POLYMERIZATION DATA AND KINETIC
PARAMETERS

Self-catalyzed polyesterification of adipic acid with
diethylene glycol

In his investigation of the kinetics of polyesterification
Flory reported the polymerization reaction between
adipic acid and diethylene glycol at 166°C4. His exper-
imental data are presented in Figure 1 as a plot of X(t)
against t instead of the common practice of plotting
1/[1-X(t)]n against t with n variously set equal to 1,
3/2, 2.4–6 Each value of the exponent n was found to
be appropriate only for a restricted subinterval in the
range 0 � X � 1.

Equation (3) is now applied directly to convert the
discrete X(t) data in Figure 1 into f(t) � d2X(t)/dt2. In
this and in subsequent examples the f(t) is then inte-
grated numerically to give dX(t)/dt, which is in turn
integrated to give X(t). Since f(t) is well behaved and is
known at a large number of regularly spaced discreti-
zation points, the two numerical integration steps are
very straightforward and can be performed using any
of the well-tested numerical integration procedures.
The outcome is shown in Figure 2 as a plot of dX(t)/dt
versus X(t). In this particular computation NK � 1601
but, for clarity, only every eighth point is shown. The
very large NK used here is atypical and is needed to
capture the very rapid increase in X(t) observed for
small t (see Fig. 1).

Instead of assuming a rate expression with a differ-
ent exponent n for different subintervals of X(t), it is
proposed that the simple rate expression

dX�t�
dt �

k�1 � X�t��3

1 � ��1 � X�t��3 (4)

be used to describe the kinetics of this polyesterifica-
tion reaction. k and � are the two parameters to be
determined. The exponent n � 3 in eq. (4) is based on

the outcome of numerical experimentation with n � 2,
21⁄2, 3. Clearly, unless a physically plausible explana-
tion can be put forward to justify both this exponent
and the factor in the denominator, eq. (4) should be
treated as an empirical model. n � 3 and its departure
from 3 have been discussed by a number of investiga-
tors.4–6 The factor in the denominator can, for exam-
ple, be regarded as an empirical factor introduced to
allow for the change in the rate constant of the reaction
as the polymerization progresses toward completion.

Numerical values of the parameters in eq. (4) and
that in the rate expressions in all the subsequent
examples are obtained using standard least-squares
regression to minimize the difference between the
model-independent rate given by eq. (3) and the
model-dependent rate given by eq. (4).1,7 The resulting
values of these parameters are k � 0.07341 min�1 and
� � 2.5563. Several methods of numerical minimiza-
tion were used in the least-squares regression compu-
tation and all of them converged to essentially the
same set of parameters.1 The resulting best-fit model-
based rate curve is shown as a continuous curve in
Figure 2. There is clearly a very satisfactory
agreement between the experimentally based and the
model-based rate curves. This is confirmed by the array
of statistical measures of goodness-of-fit generated by
the least-squares regression computation. Such statistical
measures will not be reproduced in this paper.

Instead, as a quick check of the reliability of the
best-fit eq. (4), it is integrated, with X(0) � 0 as the
initial condition, to give the model-based back-calcu-
lated degree of polymerization X(t). This X(t) is shown
as a continuous curve in Figure 1. The good agreement
of the two rate curves in Figure 2 ensures that there is
very good general agreement between the back-calcu-
lated X(t) and the experimental data.

Bulk thermal polymerization of styrene

Arai et al. investigated the thermal polymerization of
styrene in glass ampoules and followed the progress

Figure 1 Polyesterification of diethylene glycol with adipic
acid. Points are the data of Flory.4 The continuous curve is back
calculated from the best-fit rate expression given by eq. (4).

Figure 2 Rate of polyesterification. The Œ-curve is the
model-independent rate given by eq. (3) and the continuous
curve is the best-fit eq. (4).
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of the reaction gravimetrically.8 Their experimentally
measured X(t), for five different temperatures, are
shown as discrete points in Figure 3. The polymeriza-
tion rate dX(t)/dt versus X(t) computed by eq. (3) from
these data are shown in Figure 4 as marked curves. NK
� 401 in these computations. Again, for clarity, only a
reduced set of the computed rate points is shown.

The kinetics of thermal polymerization of styrene
has been studied extensively.9,10 It is generally ac-
cepted that the polymerization process can be treated
as a second-order reaction, i.e., dX(t)/dt � k(1-X(t))2.
However, it is also widely observed that the rate con-
stant k does not remain constant for the entire range of
the experimental data.10 As in the previous example,
this variation of k can be accommodated by the intro-
duction of a X(t)-dependent factor in the denominator
of the modified second-order rate expression,

dX�t�
dt �

k�1 � X�t��2

1 � ��1 � X�t��2. (5)

Standard least-squares regression computation be-
tween this equation and the model-independent rate
curves in Figure 4 allows the parameters k and � in eq.
(5) to be determined. These are summarized in Table I
and the corresponding model-based best-fit rate
curves are shown as continuous curves in Figure 4.
For each temperature eq. (5) is integrated to give the
model-based X(t) curve. These are shown as continu-
ous curves in Figure 3. On each of these curves the
experimentally measured X(t) at the smallest t is used
as the initial condition. Comparing the model-based
and the experimental curves in Figures 3 and 4, it can
be seen that agreement exhibited by the model-based
X(t) curves appear to be, in general, more satisfactory
than that exhibited by the model-based dX(t)/dt
curves. This is observed in most of the kinetic data
investigated, suggesting that regression between the
rate data given by eq. (3) and the assumed rate expres-
sion may provide a more sensitive route to the kinetic

Figure 3 Polymerization of styrene. Discrete points are the data of Arai et al.8 at different temperatures and the continuous
curves are back calculated from the best-fit rate expression in eq. (5). T � 100.1°C (f), 120.4°C (�), 140.2°C (Œ), 160.8°C (●),
and 179.5°C (�).

Figure 4 Polymerization rates of styrene. Marked curves are model-independent rates given by eq. (3). The continuous
curves are the best-fit rate expression in eq. (5). T � 100.1°C (f), 120.4°C (�), 140.2°C (Œ), 160.8°C (●) and 179.5°C (�).
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parameters than regression between the integrated
model-based X(t) and the measured X(t).

Catalytic synthesis of poly(4-oxybenzoate)

Mathew et al. investigated the kinetics of catalytic
synthesis of poly(4-oxybenzoate) by melt polymeriza-
tion of 4-acetoxybenzoic acid (ABA).11 They per-
formed the reaction in a specially constructed reactor
and followed the progress of the reaction by condens-
ing and measuring the volume of the acetic acid pro-
duced as a function of time. The volume of the poly-
merizing melt is not measured and consequently the
concentration of ABA and that of other reacting spe-
cies are not known. The volume of acetic acid col-
lected, expressed as a fraction of the expected stoichi-
ometric amount, is taken as the degree of polymeriza-
tion X(t). A typical set of their results, with dibutyltin
oxide as catalyst, at different temperatures is shown as
discrete points in Figure 5. The rate curves generated
by eq. (3) from these data are shown in Figure 6 as
marked curves. NK varied between 301 and 401 in
these computations.

Mathew et al. assumed that polymerization of ABA
can be regarded as a second-order reaction and plot-
ted as 1/[1-X(t)] against t to obtain a linear plot.11

Instead of a single straight line these authors observed

that, at 300°C and above, the 1/[1-X(t)] plots are made
up of two straight lines with significantly different
slopes. This is an indication that the kinetics of this
reaction is not adequately described by a second-order
rate model with a unique rate constant k. To accom-
modate this a modified second-order rate expression
of the form

dX�t�
dt �

k�1 � X�t��2

1 � ��1 � X�t�� (6)

is used to describe the ABA data. The effective rate
constant is now a function of X(t). In this case it was
found that the exponent of the empirical factor in the
denominator equal to unity provides marginally more
satisfactory description of the experimental data. But
other exponents such as 2 or 3/2 also provide a rea-
sonably satisfactory description of both the rate and
the degree of polymerization curves. With the data
available the regression computation is unable to dis-
criminate between these physically plausible expo-
nents. The values of k and � for eq. (6) are summarized
in Table II and the resulting model-based rate curves
are shown as continuous curves in Figure 6. The back-
calculated X(t) curves using the k and � in Table II are
shown as continuous curves in Figure 5. Again, it can
be seen that even though the agreement between the
model-based and the model-independent rate curves

TABLE I
Kinetic Parameters of eq. (5) for Styrene Polymerization

Temperature (°C) k (min�1) � (�)

100 0.003784 8.3977
120 0.01146 5.5104
140 0.03115 4.2080
160 0.06162 2.2344
180 0.12428 1.5231

Figure 5 Polymerization of ABA. Points are the experi-
mental data of Mathew et al.11 and the continuous curves are
back calculated from the best-fit rate expression in eq. (6). T
� 250°C (�), 275°C (�), 300°C (Œ), 325°C (●), and 350°C (f).

Figure 6 Polymerization rates of ABA. Marked curves are
model-independent rates given by eq. (3) and the continu-
ous curves are the best-fit rate expression in eq. (6). T
� 250°C (�), 275°C (�), 300°C (Œ), 325°C (●), and 350°C (f).

TABLE II
Kinetic Parameters of eq. (6) for ABA Polymerization

Temperature (°C) k (min�1) � (�)

250 0.07034 0
275 0.19257 0.09739
300 0.53110 1.10173
325 3.98214 12.6526
350 2.22326 1.88085
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in Figure 6 is not completely satisfactory, the agree-
ment between their counterparts in Figure 5 is reason-
ably satisfactory. The relatively large deviation of the
back-calculated X(t) curve for T � 350°C is a conse-
quence of the inability of eq. (6) to describe the poly-
merization rates given by eq. (3) when the degree of
polymerization is high.

Microemulsion polymerization of hexyl
methacrylate

Morgan et al. investigated the polymerization of hexyl
methacrylate in a mixed cationic surfactant micro-
emulsion system.12 A typical set of their X(t) versus t
data are reproduced as discrete points in Figure 7. The
concentrations of the initiator, azobis (amidinopro-
pane) hydrochloride, for these data are shown in Fig-
ure 7.

The polymerization rates dX(t)/dt extracted by eq.
(3) from the experimental data are shown as marked
dX(t)/dt versus X(t) curves in Figure 8. NK � 401 but
for clarity only every fifth point is shown. Morgan et
al. obtained the dX(t)/dt curves by an entirely differ-
ent technique.12 They fitted spline curves through the
discrete X(t) data in Figure 7 and obtained dX(t)/dt by
differentiating the spline curves. There is very good
agreement between their rate curves (not shown) and
the marked curves in Figure 8. This is rather surpris-
ing but reassuring as differentiating spline curves
tends to amplify noise.

Based on a number of simplifying assumptions,
such as no bimolecular termination and fast radical
capture, Morgan et al. arrived at the rate expression12

dX�t�
dt � �1 � X�t��� � 2A loge �1 � X�t��. (7)

A is the only kinetic parameter. For each initiator
concentration this parameter is determined by least-
squares regression between eq. (7) and the model-
independent rate curve in Figure 8. The resulting pa-
rameters are summarized in Table III. The parameters
obtained by Morgan et al. from their spline-based X(t)
curves are also shown in Table III.12 In view of their
entirely different origin, the agreement between the
two set of parameters can be regarded as very satis-
factory. The rates curves based on the best-fit eq. (7) of
the present investigation are shown as marked curves
in Figure 8a.

It is clear from Figure 8a that eq. (7) provides a
satisfactory description of the experimentally ob-
served rates except in the neighborhood of X close to
unity where it consistently overestimated the rate.
This observation has also been reported by Morgan et
al..12 The performance of eq. (7) can be improved by
introducing a simple correction factor. Numerical ex-

Figure 7 Polymerization of hexyl methacrylate at different
initiator concentration. Points are the experimental data of
Morgan et al.12 and the continuous curves are back calcu-
lated from the best-fit least-squares eq. (8). Initiator concen-
tration � 0.326 mM (■), 0.159 mM (Œ), 0.092 mM (�), and
0.042 mM (�).

Figure 8 Polymerization rates of hexyl methacrylate. The marked curves are model-independent rates given by eq. (3) and
the continuous curves in (a) are best-fit eq. (7) and that in (b) are best-fit eq. (8). Initiator concentration � 0.326 mM (f), 0.159
mM (Œ), 0.092 mM (�) and 0.042 mM (�).
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perimentation shows that greatly improved agree-
ment can be achieved if the rate expression of Morgan
et al. is modified to

dX
dt �

�1 � X�� � 2A loge �1 � X�

1 � �X4 . (8)

� is the second parameter of this new rate expression
and the introduction of the correction factor is, as in
previous examples, to allow for the fact that A may not
be strictly a constant but changes with X. The best-fit
eq. (8) is shown as continuous curves in Figure 8b.
There is now good agreement over the entire range of
X for all the experimental data. The numerical values
of A and � given by least-squares regression are
shown in Table III.

The back-calculated X(t) curves based on the best-fit
eq. (8) are shown as continuous curves in Figure 7. The
agreement is satisfactory for the entire range of the
experimental data. If the best-fit eq. (7) is used instead
of eq. (8) the agreement is generally less satisfactory
and deteriorates markedly for the curve with the low-
est initiator concentration for large X. This has also
been observed by Morgan et al.12 Despite the improve-
ment achieved, unless a theoretical justification can be
put forward to explain the additional factor in eq. (8),
this rate expression can only be regarded as an empir-
ical equation.

Bulk polyesterification between o-phthalic
anhydride and neopentyl glycol

Cudero et al. examined the suitability of the polyester
formed by the polymerization of o-phthalic anhydride
and neopentyl glycol as a binder for printing ink.13 As
part of their investigation they studied the kinetics of
this polymerization process and followed the progress
of the reaction by different NMR analyses and stan-
dard volumetric analysis. In one set of their data these
authors presented the concentration of the ester group
[-COO-] formed as a function of time. These data are
shown as discrete points in Figure 9. As in the previ-
ous examples, eq. (3) is applied to convert these data
into a model-independent reaction rate curve and this
is shown in Figure 10 as a marked curve. NK � 401 in

the Tikhonov regularization computation and only
selected points are shown.

Cudero et al. used the following rate expression to
describe the kinetics of this polyesterification reac-
tion:13

d�™COO™�
dt � k�a � �™COO™��m�b � �™COO™��n. (9)

a and b are the initial concentration of the acid group
[-COOH] and that of the alcohol group [-OH] in the
reacting mixture and the corresponding terms on the
RHS of eq. (9) are their respective concentrations at
time t. For the data in Figure 9, a � 3.19 mol kg�1 and
b � 5.98 mol kg �1 13. Apart from the rate constant k,
the exponents m and n in eq. (9) have also been left as
kinetic parameters to be determined. Following Cud-
ero et al., m and n are restricted to integer values and
simple fractions such as 1/2 and 3/2.13 Least-squares
minimization between eq. (9) and the rate curve
in Figure 10 resulted in k � 0.006024 [-COO-]
[-COOH]�m[-OH]�n min�1 with m � 1.0 and n � 0.5.
The more general optimum parameters are k
� 0.01131[-COO-][-COOH]�m[-OH]�n min�1, m
� 1.248 and n � 10�11. The model-based rate curve

TABLE III
Kinetic Parameters of eqs. (7) and (8)

Initiator
concentration

(mM)

eq. (7)
(this investigation)

A (s�2)

eq. (7)
Morgan et al.12

A (s�2)

eq. (8)
(this investigation)

A (s�2) �

0.326 1.012 � 10�4 1.0 � 10�4 1.104 � 10�4 0.3412
0.159 4.876 � 10�5 5.0 � 10�5 5.205 � 10�5 0.2575
0.092 2.013 � 10�5 1.9 � 10�5 2.143 � 10�5 0.6264
0.042 1.002 � 10�5 9.8 � 10�6 1.319 � 10�5 2.6334

Figure 9 Polymerization of o-phthalic anhydride and neo-
pentyl glycol. Points are the data of Cudero et al.13 and the
continuous curve is back calculated from the best-fit eq. (10)
with m � 2 and n � 0.
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with m � 1.0 and n � 0.5 is shown as a continuous
curve in Figure 10a.

It is clear that the fit in Figure 10a is generally
acceptable. The corresponding back-calculated X(t)
curve (not shown) is also in acceptable agreement
with the experimental data in Figure 9. However, it is
also clear from Figure 10a that the curvature of the
model-based rate curve is the reverse of that of the
model-independent rate data. To rectify this situation,
eq. (9) is modified empirically to

d�™COO™�
dt �

k�a � �™COO™��m�b � �™COO™��n

1 � ��a � �™COO™��m�b � �™COO™��n.

(10)

Least-squares regression is again applied to determine
the kinetic parameters of this model.

The new parameters are k � 0.01430[-COO-]
[-COOH]�m[-OH]�n min�1, � � 0.2384[-COOH]�m

[-OH]�n, m � 2 and n � 0 (the more general set is k
� 0.01417[-COO-][-COOH]�m[-OH]�n min�1, �
� 0.2274[-COOH]�m[-OH]�n, m � 1.9448 and n � 0). It
is interesting to note that n turned out to be zero in this
more general rate expression. The best-fit rate curve
based on eq. (10) with m � 2 and n � 0 is shown as a
continuous curve in Figure 10b. This curve shows the
correct curvature and is clearly, even visually, an im-
provement over that in Figure 10a. The X(t) back
calculated from this more general rate expression is
shown as a continuous curve in Figure 9. The agree-
ment with the experimental data is, as expected, very
good but the improvement over the corresponding
back-calculated curve based on eq. (9) (not shown) is
not visually perceptible.

Cudero et al. followed the standard procedure, i.e.,
integrating eq. (9) numerically and then applied least-
squares regression between the integrated curve and
the concentration data in Figure 9, to determine the

kinetic parameters.13 Their regression computation
did not result in a unique set of rate parameters. The
optimum combinations of {m, n} observed by these
authors include {1, 1}, {1, 3/2}, {1, 2}, {3/2, 0}, {3/2,
1/2}, etc. In view of this lack of uniqueness, the {m, n}
of the present investigation reported above can be
regarded to be in acceptable agreement with their
findings. The back-calculated X(t) curves based on all
their near-optimum parameter sets are visually indis-
tinguishable from one another. This has long been the
difficulty encountered when applying regression be-
tween the integrated rate expression and experimental
degree of polymerization data. The problem is less
serious when the regression computation is between
the assumed rate expression and the model-indepen-
dent rate data generated by eq. (3).

DISCUSSION

The procedure based on Tikhonov regularization has
successfully converted the degree of polymerization
data X(t) into polymerization rates dX(t)/dt. It is ap-
plicable to kinetic data irrespective of the types of
polymerization reactions. The same equation, eq. (3),
is used to perform the data conversion. It is a simple
equation and all the numerical operations in setting
up the matrices and their subsequent manipulations
can be performed using standard commercial com-
puter software.7 The computation time required, even
when NK is as large as 103, on the current generation
of PCs is less than a minute or two.

The data as generated by eq. (3) take the form of a
discrete set of closely spaced polymerization rate data
points. Without assuming any rate model, these data
points can be used to back calculate the degree of
polymerization curves. Because of the nature of the
Tikhonov regularization computation, good agree-
ment with the original experimental data is observed

Figure 10 Polymerization rate of o-phthalic anhydride and neopentyl glycol. Œ-curves in (a) and (b) are the model-
independent rate given by eq. (3). The continuous curves in (a) is the best-fit eq. (9) with m � 1, n � 0.5 and that in (b) is the
best-fit eq. (10) with m � 2 and n � 0.
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in each case. As the back calculations were performed
using commercial software7 independent of that de-
veloped specifically for the present investigation, they
provide a quick check against possible errors intro-
duced during the derivation and numerical solution of
eq. (3).

The discussion up to this point is independent of the
reaction kinetic model. As can be seen from all the
examples, the regularization parameter � has ensured
that each set of the rate data given by eq. (3) traces out
a relatively smooth curve. Such curves, even in the
absence of a rate model, can be used directly in pro-
cess engineering calculations. For example, they can
be used in the sizing calculations of reactors when a
satisfactory rate expression is not available.

If a rate expression is proposed for the polymeriza-
tion process in question, the X(t) versus dX(t)/dt curve
generated by eq. (3) can be used to determine the
parameters in the model. The key step involved here is
the least-squares regression between the relatively
simple rate expression and the well-behaved rate data.
This can be performed using standard regression or
least-squares minimization routines found in most
commercial software packages. As mentioned above,
using the computed X(t) versus dX(t)/dt curve rather
than the integrated degree of polymerization curve to
determine the kinetic parameters can be expected to
simplify the regression calculations significantly and
lead to more reliable results. These gains have been
demonstrated by some of the examples shown above.

These examples also demonstrate how the testing of
modified rate expressions is greatly simplified. Re-
gression computation can be carried out directly each
time the rate expression is modified. There is no need
to repeat the computation in eq. (3). There is also no
need to integrate the rate expression each time it is
modified. In contrast, in the widely adopted proce-
dure of performing the regression between the exper-
imental data and the model-based degree of polymer-
ization curve, repeated integration is required each
time the rate expression is modified.

The success of Tikhonov regularization requires an
appropriately chosen regularization parameter �. In
the present investigation this choice has been guided
by the simple expectation that the average and maxi-
mum deviation between XC and XM must be physi-
cally realistic, i.e., they must be comparable with the
estimated magnitude of the error bars of the kinetic
data while ensuring that the resulting polymerization
rate curve is sufficiently smooth. This is referred to as
the Morozov Principle in some mathematical texts.2

For all the polymerization processes investigated, this
principle appears adequate as a guide for locating the
appropriate �. As long as � is of the appropriate order

of magnitude, changes of � within this range do not
greatly affect the final results. Fine tuning of � is
generally not required. For an example of the effects of
changing � see Yeow et al.3 As � is neither a property
of the reaction under investigation nor that of the
experimental technique used to monitor the polymer-
ization process, it is therefore not very useful, and in
fact rather misleading, to tabulate the values of �
associated with the reactions investigated in this pa-
per. There are alternative methods for selecting � such
as the L-curve method14 and the method of general-
ized cross validation.15 See Engl et al.2 for further
discussion of this issue.

CONCLUSION

Tikhonov regularization provides a reliable way of
converting the degree of polymerization data into po-
lymerization rates. The procedure is independent of
any assumed rate expression and is applicable to dif-
ferent types of polymerization reactions. As noise am-
plification is kept under control, the resulting large set
of rate data allows the kinetic parameters in any pro-
posed kinetic model of the polymerization reaction to
be determined with relative ease and reliability.

YLY thanks Peter Cass and Alan Kwok for informative
discussions on various polymerization processes.
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